WEEKLY TEST TYJ -1 TEST - 16 BALLIWALA SOLUTION Date 11-08-2019

[PHYSICS]

1. Suppose the force on the block be P and acceleration of the system be a. Then
$\mathrm{a}=\frac{\mathrm{F}}{(\mathrm{M}+\mathrm{m})}$ and $\mathrm{P}=\mathrm{Ma}=\frac{\mathrm{MF}}{(\mathrm{M}+\mathrm{m})}$
2. Acceleration of the rope $a=(F / M)$

Now, considering the motion of the part $A B$ of the rope [which has mass $\left(\frac{M}{L}\right) y$ and acceleration given by eqn. (i) assuming that tension at B is T.
$F-T=\left(\frac{M}{L} y\right) \times a$

or $\quad F-T=\frac{M}{L} y \times \frac{F}{M}=\frac{F y}{L}$
or $\quad T=F-F \frac{y}{L}=F\left(1-\frac{y}{L}\right)$
3. Equations of motion are :
$\mathrm{F}-\mathrm{T}_{1}=2 \mathrm{a}$
$T_{1}-T_{2}=3 a$
$\mathrm{T}_{2}=5 \mathrm{a}$

Adding all above equations, we get;
$F=10 a=10 \times 1=10 \mathrm{~N}$
4. The tension in the string between P and Q accelerates double the mass as compared to that between A and R. Hence, tension between P and $Q=2 \times$ tension between Q and R
5.
6. Thension, $T=M(g-a)$. When climbing down very fast, T can be less than $M g / 2$, i.e., less than breaking load
7. As the lift moving downwards, stops after travelling a distance of 50 ft , hence from equation
$\mathrm{v}^{2}=\mathrm{u}^{2}+2$ as, we get;
$0+20^{2}+2 \mathrm{a} \times 50 \quad$ or $\mathrm{a}=-4 \mathrm{ft} / \mathrm{s}^{2}$
i.e., lift is accelerated up with an acceleration $4 \mathrm{ft} / \mathrm{sec}$
$W=m(g+a)=1600(32+4)$
$=\frac{57600}{32}=1800$ pound force
8. Giventhat $\mathrm{mg} \sin \theta=8$. In order to move it upwards with same acceleration, we need to play a force F such that
$F-m g \sin \theta=m g \sin \theta$
$\therefore \quad F=2 m g \sin \theta=16 \mathrm{~N}$
9.
10. Reading of spring balance $=$ tension

Thension, $\mathrm{T}=\frac{2 \mathrm{~m}_{1} \mathrm{~m}_{2} \mathrm{~g}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=\frac{2 \times 2 \times 2 \times 2 \times 9.8}{2+2}$
$=19.6 \mathrm{~N}=\frac{19.6}{9.8} \mathrm{kgf}=2 \mathrm{kgf}$
11. One of the weights gives a reading and the other prevents the acceleration of the svstem. Therefore, the reading is not zero but 10 N
12. From the figure, it follows that

14.
$\mathrm{T}_{1}=3 \mathrm{~g}$
$2 g+T_{1}=T_{2}$
or $\quad \mathrm{T}_{2}=2 \mathrm{~g}+3 \mathrm{~g}$
$=5 \mathrm{~g}$
13. As discussed in questions 9 , tension in the arms will be minimum, when $\cos \theta$ is maximum $(=1)$ or $\theta=0^{\circ}$, i.e., angle between arms $=0^{\circ}\left(\mathrm{T}_{\text {min }}=\mathrm{W} /\right.$ 2)
15. $\vec{F}=6 \hat{i}-8 \hat{j}+10 \hat{k}$
$|\vec{F}|=\sqrt{36+64+100}=\sqrt{200} \mathrm{~N}=10 \sqrt{2} \mathrm{~N}$
Acceleration, $\mathrm{a}=1 \mathrm{~ms}^{-2}$
\therefore Mass,
$M=\frac{10 \sqrt{2}}{1}=10 \sqrt{2} \mathrm{~kg}$

[CHEMISTRY]

16.
17.
18.

$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$ has 10σ-bonds are 3π-bonds
SiF_{4} is tetrahedral and SF_{4} is see-saw shaped.
$\mathrm{BrO}_{3}^{\ominus}$ and XeO_{3} both have sp^{3}-hybridisation and pyramidal shape.
$\stackrel{\otimes}{\mathrm{N}} \mathrm{O}_{2}$ is $\mathrm{O}=\stackrel{\otimes}{\mathrm{N}}=\mathrm{O}$ linear ion.
BF_{3} and NO_{2}^{-}have sp^{2}-hybridised central atom while NH_{2}^{-}and $\mathrm{H}_{2} \mathrm{O}$ have sp^{3} hybridised central atom.
22.
 sp^{2}-hybridisation
23.

24.

26. Bond orders of $\mathrm{O}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}$ and O_{2}^{+}are 1, 1.5, 2 and 2.5 respectively. (Please, refer to the text article no. 5.25)
28. \quad NO has 15 electrons: $\operatorname{KK}\left(\sigma_{15}\right)^{2}\left(\pi_{1 s}^{*}\right)\left(\pi_{2 p_{x}}\right)^{2}\left(\pi_{2 p_{y}}\right)^{2}\left(\sigma_{2 p_{\mathrm{z}}}\right)^{2}\left(\pi_{2 p_{x}}^{*}\right)^{1}$ with bond order 2.5, paramagnetic nature. NO^{+}has 14 electrons, where $\left(\pi_{2 p_{z}}^{*}\right)^{1}$ electron is lost. The bond order increases to 3 and diamagnetic nature is attained.

