

WEEKLY TEST TYJ -1 TEST - 16 BALLIWALA SOLUTION Date 11-08-2019

[PHYSICS]

1. Suppose the force on the block be P and acceleration of the system be a. Then $a = \frac{F}{(M+m)} \text{ and } P = Ma = \frac{MF}{(M+m)}$ 2. Acceleration of the rope a = (F/M).....(i) Now, considering the motion of the part AB of the rope [which has mass $\left(\frac{M}{L}\right)y$ and acceleration given by eqn. (i) assuming that tension at B is T. С T€ $F-T = \left(\frac{M}{L}y\right) \times a$ or $F - T = \frac{M}{I}y \times \frac{F}{M} = \frac{Fy}{I}$ or $T = F - F \frac{y}{L} = F \left(1 - \frac{y}{L} \right)$ 3. Equations of motion are : $F - T_1 = 2a$ $T_1 - T_2 = 3a$ 5 kg(i)(ii) $T_{2}^{'} = 5\hat{a}$(iii) Adding all above equations, we get; F = 10a = 10 × 1 = 10 N 4. The tension in the string between P and Q accelerates double the mass as compared to that between A and R. Hence, tension between P and Q = 2 × tension between Q and R 5. Thension, T = M(g - a). When climbing down very fast, T can be less than Mg/2, i.e., less than breaking 6. load 7. As the lift moving downwards, stops after travelling a distance of 50 ft, hence from equation $v^2 = u^2 + 2as$, we get; $0 + 20^2 + 2a \times 50$ or $a = -4ft/s^2$ i.e., lift is accelerated up with an acceleration 4ft/sec W = m(g + a) = 1600(32 + 4) $=\frac{57600}{32}=1800$ pound force 8. Given that mg sin θ = 8. In order to move it upwards with same acceleration, we need to play a force F such that $F - mg \sin\theta = mg \sin\theta$ \therefore F = 2 mgsin θ = 16 N

9.

10. Reading of spring balance = tension

Thension,
$$T = \frac{2m_1m_2g}{m_1 + m_2} = \frac{2 \times 2 \times 2 \times 2 \times 9.8}{2 + 2}$$

$$19.6N = \frac{19.6}{9.8}$$
kgf = 2kgf

- 11. One of the weights gives a reading and the other prevents the acceleration of the system. Therefore, the reading is not zero but 10 N
- 12. From the figure, it follows that

$$T_1 = 3g$$

2g + $T_1 = T_2$

or $T_2 = 2g + 3g$ = 5g

= '

13. As discussed in questions 9, tension in the arms will be minimum, when $\cos\theta$ is maximum (=1) or $\theta = 0^{\circ}$, i.e., angle between arms = $0^{\circ}(T_{min} = W/2)$

15.
$$\vec{F} = 6\hat{i} - 8\hat{j} + 10\hat{k}$$

 $|\vec{F}| = \sqrt{36 + 64 + 100} = \sqrt{200}N = 10\sqrt{2}N$ Acceleration, $a = 1 \text{ ms}^{-2}$

 $\therefore \text{ Mass,} \qquad M = \frac{10\sqrt{2}}{1} = 10\sqrt{2}\text{kg}$

[CHEMISTRY]

16.

- 17. $CH_2=CH-CH_2-C=CH$ has 10σ -bonds are 3π -bonds
- 18. SiF_4 is tetrahedral and SF_4 is see-saw shaped.
- 19. BrO_3^{\ominus} and XeO₃ both have sp³-hybridisation and pyramidal shape.
- 20. $\underset{NO_2}{\overset{\otimes}{}}$ is $\underset{O=\overset{\otimes}{}}{\overset{\otimes}{}}$ = $\underset{O}{}$ linear ion.
- 21. BF_3 and NO_2^- have sp²-hybridised central atom while NH_2^- and H_2O have sp³ hybridised central atom.
- 22. Sp²-hybridisation

23. F—Xe—F

- 26. Bond orders of O_2^{2-}, O_2^{-}, O_2 and O_2^{+} are 1, 1.5, 2 and 2.5 respectively. (Please, refer to the text article no. 5.25)
- 28. NO has 15 electrons : KK $(\sigma_{15})^2 (\pi^*_{15}) (\pi_{2p_x})^2 (\sigma_{2p_y})^2 (\sigma_{2p_x})^1$ with bond order 2.5, paramagnetic nature. NO⁺ has 14 electrons, where $(\pi^*_{2p_x})^1$ electron is lost. The bond order increases to 3 and diamagnetic nature is attained.

